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Abstract

An approach is described for investigation of the interaction between a rigid body and a viscous fluid boundary under

acoustic wave propagation. The influence of the liquid on the rigid body is determined as a mean force, which is a

constant in the time component of the hydrodynamic force. This enables the use of a previously developed technique for

calculation of pressure in a compressible viscous liquid. The technique takes into account the second-order terms with

respect to the wave field parameters and is based on investigation of a system of initially nonlinear hydromechanics

equations that can be simplified with respect to the wave motion parameters of the liquid. It has proven possible to

retain the second-order terms for determination of stresses in the liquid without having to solve the system of nonlinear

equations. The stresses can be expressed in terms of parameters found in the solution of the linearized equations of the

compressible viscous liquid. In this way, the solution of linearized equations is expressed in terms of a scalar and vector

potentials. The problem statement is derived for a rigid cylinder located near a rigid flat wall under the effects of a wave

propagating perpendicular to the wall. The solution for this particular example is obtained.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

In practice, many problems arise that involve the study of dynamic processes in fluids, and acoustic excitation is

employed in many technological processes based on a fluid–particle system. Studies of particle dynamics are therefore

of particular interest in this case. In industry, there exist technological processes (using particle coagulation in a fluid

with subsequent sedimentation) in which time-averaged (radiation) forces play a determining role. Various aspects of

the cylinder motion in liquid have been addressed in previous works (Morse et al., 2008; Pasto, 2008).

The study of particle motion under the influence of time-averaged forces (mean motion) is a complicated problem.

More precise prediction of the solids’ behaviour requires consideration of the finiteness of the space filled with the

liquid, since the interaction process between the solids and the liquid is significantly affected by the presence of

boundaries. Solid particles near a fluid boundary are in an interference field composed of primary and reflected waves,

which determines the interaction of the boundary and particles via the medium. The wave interference field creates a

time-averaged force whose magnitude and direction are functions of many factors: the angle of incidence of the wave on
e front matter r 2009 Elsevier Ltd. All rights reserved.
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the boundary surface, the ratio of the wavelength to the distance between particle and boundary, the shape of the

boundary, etc.

In this work, we consider a rigid body located near the interface between a compressible viscous fluid and a rigid flat

wall. We define the mean forces as the mean (with respect to the wave field period) values of the integrated forces of the

fluid acting on the body. In this case, the linear approximation for determination of these forces is insufficient. That

approximation provides a periodic force that leads to a zero mean value. The mean force becomes evident as a result of

taking into account the second-order effects and it has the same order of magnitude. This means that for stress

calculations in the liquid, the nonlinear equation should be used and second-order terms with respect to the wave field

parameters should be retained. Thermal effects in the liquid will be neglected in further analysis. In this case, the

problem can be solved by the method proposed in Guz and Zhuk (1982, 1993, 2004) for an unbounded fluid. According

to this method, the tensor field of stresses in the fluid is represented in terms of the potentials of the primary and

secondary waves with accuracy to values of the order of the Mach number. The secondary-wave potentials are

determined by solving a diffraction problem formulated on the basis of the linearized theory of a compressible viscous

fluid (Guz, 1981, 1998, 2000a, b, 2009).

We consider a circular cylinder of radius a parallel to a flat rigid wall at distance d. The principal coordinate system is

such that its origin, point O, is in the plane of the wall (Fig. 1). The Ox3 axis is parallel to the axis of the cylinder, and

the Ox1 axis is perpendicular to the plane of the wall so that it intersects the axis of the cylinder. It is assumed that a

plane pressure wave is propagated in the negative direction of the Ox1 axis. In accordance with this method, the mean

force acting on the cylinder is filtered out by time-averaging the surface integral of the convolution of the stress tensor in
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Fig. 1. Cylinder and rigid wall location.
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the fluid with the basis vector of the normal to the surface S of the cylinder

F ¼

ZZ
S

R̂ � erdS, (1)

where R̂ is the tensor of stresses in the fluid, and er is the basis vector of the normal to the lateral surface S of the

cylinder, which we define on a unit length of the cylinder. In the calculation of the stress tensor

R̂ ¼ ð�pþ l0r � vÞÊþ 2m0ê (2)

the pressure in the fluid must be (Guz and Zhuk, 1982)

p ¼ r0
l0 þ 2m0
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In Eqs. (2) and (3), r0 and a0 are the density of the sound velocity in the motionless fluid, v is the velocity vector of

particles of the fluid, p is the pressure perturbation, l0 and m0are the dynamic and second viscosity coefficients,

2ê ¼ rvþ ðrvÞT is the deformation-velocity tensor, and Ê is a unit tensor. The scalar potential F of the wave field is

obtained from the solution of the linear problem of the incident and reflected waves for the cylinder. The partial case of

the ideal compressible liquid (King, 1934) can be obtained by the limiting transition for l0, m0-0 in expression (3).
2. Procedure for velocity field potentials obtained from solution of the diffraction problem

It is assumed that the velocity potential of the incident wave is given by the expression

Fi ¼ A exp½�iðgx1 þ otÞ�, (4)

where A is the wave amplitude for x1 ¼ 0, g ¼ k+ix1 is the complex-value wavenumber, and o is the circular frequency.

From a mathematical point of view, the diffraction problem for an incident wave on the cylinder can be formulated

on the basis of the linearized theory of compressible viscous liquid (Guz, 1981, 1998). Solution of the problem is

reduced to the solution of equations

1þ
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F ¼ 0, (5)
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W ¼ 0. (6)

The velocity field v in the liquid can be obtained as follows:

v ¼ rFþ r �W; r �W ¼ 0 (7)

and should satisfy next three conditions:
(i)
 boundary condition on the wall surface

v ¼ 0; for x1 ¼ 0; (8)
(ii)
 boundary condition on the lateral surface of the cylinder

v ¼ V; (9)
(iii)
 fade condition at infinity of the wave reflected by the cylinder.
The velocity vector V of the cylinder, provided that it is cylindrically isotropic, is determined from the equation of

motion in the fluid

m _V ¼

ZZ
S

r̂ � erdS, (10)
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in which m is the mass of a unit length of the cylinder. In the linearized theory, the stress tensor r̂ is calculated by the

formula

r̂ ¼ ð�p0 þ l0r � vÞÊþ 2m0ê, (11)

where

p0 ¼ r0
l0 þ 2m0

r0
D�

@

@t

� �
F. (12)

Formula (7) is used to determine the components of the deformation-velocity tensor ê.

For the problem at hand, wave (4), reflected from the flat surface of the rigid wall, will not be converted to a shear

wave; therefore, the potential of the reflected wave can be represented as

F1 ¼ A exp iðgx1 � otÞ½ �. (13)

Then, the problem formulated above is reduced to the problem of diffraction of waves (4) and (13) on the cylinder

located near the plane wall. In order to solve the problem, we use the approaches developed in the book by Guz and

Golovchan (1972) for problems of elastic-wave diffraction in multiply connected bodies. We construct solutions of Eqs.

(5) and (6) by separation of variables in cylindrical coordinate systems. For this, we relate the cylinder to a local

cylindrical coordinate system O1r1f1z3 (see Fig. 1) in which the coordinate origin is the point of intersection of the

cylinder axis with the Ox1 axis and the Oz3 axis directed along the cylinder’s axis. In the case in question, the vector

potential W is determined via a single scalar W1 (Guz and Golovchan, 1972)

W ¼ e1C1. (14)

Using Jacobi expansions, we represent the expressions for plane waves (4) and (13) in the cylindrical coordinate

system O1r1f1z3 in terms of the cylindrical wave functions

Fi ¼ Ae�igd
X1
n¼0

ð�1Þneni
nJnðgr1Þ cosðnf1Þ, (15)

F1 ¼ Aeigd
X1
n¼0

eni
nJnðgr1Þ cosðnf1Þ, (16)

where e0 ¼ 1, en ¼ 2 (nZ1), and Jn(z) are Bessel functions of argument z.

The velocity field of the wave reflected by the cylinder should satisfy boundary condition (8) on the surface x1 ¼ 0.

This condition is satisfied in the cylindrical coordinate system if an imaginary representation technique is employed. Let

us assume that the entire space is filled with liquid and there is a second cylinder located symmetrically to the first with

respect to the plane x1 ¼ 0. It is sufficient to show that the velocity field produced by the waves reflected by the cylinders

complies with condition (8). Coordinate system O2r2f2z3
0 related to the second cylinder is introduced. Then, solutions

of Eqs. (5) and (6) (i.e., potentials of pressure waves F sð Þ
d and shear waves C sð Þ

1 reflected by the cylinders, where s ¼ 1,2 is

the cylinder number ) are expressed in terms of generalized Fourier series

FðsÞd ¼
X1
n¼0

AðsÞn Hð1Þn ðgrsÞ cosðnfÞ, (17)

CðsÞ1 ¼
X1
n¼1

BðsÞn Hð1Þn ðbrsÞ sinðnfÞ; (18)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ior0=m0

p
is the wavenumber of the shear wave, and A sð Þ

n and B sð Þ
n (s ¼ 1,2) are the integration constants.

Using formulas (7), (17), and (18), we find that condition (8) for the waves reflected from the cylinders establishes the

following relationship between the coefficients in series (17) and (18):

Að2Þn ¼ ð�1Þ
nþ1Að1Þn ; Bð2Þn ¼ ð�1Þ

nþ1Bð1Þn .

Constants A 1ð Þ
n and B 1ð Þ

n can be found from boundary condition (9) on the surface of the first cylinder. To this end, it is

necessary to rewrite the potentials of the velocity field (7)

F ¼ Fi þ F1 þ Fð1Þd þ Fð2Þd ; C1 ¼ Cð1Þ1 þCð2Þ1

in terms of coordinate system O1r1f1z3 related to the first cylinder.
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Employing the addition theorems for the cylindrical wave functions (e.g. see Guz and Golovchan, 1972), the

following expressions can be deduced:

Fd ¼
X2
s¼1

FðsÞd ¼
X1
n¼0

½Að1Þn Hð1Þn ðgr1Þ þ enSð1Þn Jnðgr1Þ� cosðnj1Þ, (19)

C1 ¼
X2
s¼1

CðsÞ1 ¼
X1
n¼1

½Bð1Þn Hð1Þn ðbr1Þ þ enQð1Þn Jnðbr1Þ� sinðnj1Þ,

Sð1Þn ¼
1

2

X1
m¼0

ð�1Þmþ1a2nmAð1Þm ; Qð1Þn ¼
1

2

X1
m¼0

ð�1Þmþ1a1nmBð1Þm ,

a1nm ¼ Hð1Þn�mð2bdÞ � ð�1Þ
mH
ð1Þ
nþmð2bdÞ,

a2nm ¼ Hð1Þn�mð2gdÞ þ ð�1Þ
mH
ð1Þ
nþmð2gdÞ. (20)

From the condition of symmetry of the wave field with respect to the plane Ox1x3, it follows that the cylinder will

move along the Ox1 axis under the influence of an acoustic wave. Writing the right side of (10) in the cylindrical

coordinate system and taking (11) and (12) into account, after integration we obtain the following formula for the

projection of the cylinder velocity onto the Ox1 axis:

VX 1
¼

Z
a
½�2e1A sinðgdÞJ1ðgaÞ þ A

ð1Þ
1 H

ð1Þ
1 ðgaÞ þ e1S

ð1Þ
1 J1ðgaÞ þ B

ð1Þ
1 H

ð1Þ
1 ðbaÞ þ e1Q

ð1Þ
1 J1ðbaÞ�. (21)

The factor exp(�iot) is omitted in formulas (15)–(21).

An infinite system of algebraic equations for constants A 1ð Þ
n and B 1ð Þ

n is derived from boundary condition (9), taking

into account (15), (16), (19)–(21), and (7) (not shown here due to complexity). The system has a unique solution that can

be found by a reduction method. The desired accuracy is ensured by comparing the calculation results for a successively

increasing number of terms. Calculation of values for constants A 1ð Þ
n and B 1ð Þ

n completes the determination procedure for

the velocity field potentials F and W ¼ e3C1.
3. Calculation of time-averaged force

By making use of velocity field potentials deduced from the linear equations, we can determine the pressure (3) and

stress (2) in the liquid with accuracy to the second-order term. Thus, a hydrodynamic force acting on the cylinder can be

found with the same accuracy. In view of the symmetry of the wave field, the force will be directed along the Ox1 axis.

Using expressions (7), (3), and (2), the component of hydrodynamic force can be deduced from Eq. (1):

Fx1
¼

ZZ
S

i1 � R̂ � er1dS: (22)

Having averaged (22) over time, the corresponding time-averaged force can be determined:

Fx1

� �
¼ lim

T!1

1

2T

Z T

�T

Fx1
dt: (23)

Applying the approaches used in Zhuk (1991), a numerical solution for time-averaged force can be calculated in the

particular case of the cylinder located near the plane wall, and motion of the body in the liquid caused by the force can

be determined.

The approach considered here can be used to solve similar problems in the case of a soft boundary or in the case of a

flat interface between two fluids.
4. Example

As an example, let us consider the motion of a cylinder caused by the time-averaged radiation force in an ideal liquid

near the plane solid wall. The acoustic wave propagates perpendicular to the plane of wall such that

Fi ¼ A exp½�iðkx1 þ otÞ�. (24)
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The main expressions for the case of an ideal liquid can be obtained from those deduced above by means of the

limiting conditions l0-0 and m0-0. If we constrain this case with additional conditions kab1 and kdb1, the velocity

field (7) becomes a superposition of the incident wave and the wave reflected by the wall. In this case, the time-averaged

radiation force (23) and the velocity field can be expressed as follows [e.g., see Guz et al. (1994)]:

FX 1

� �
¼ A2pr0 sinð2kdÞ

3� Z
að1þ ZÞ

� �
ðkaÞ3, (25)

vX 1
¼ �2Ak sinðkx1Þ cosðotÞ, (26)

where Z is a ratio of the density of liquid r0 to the density of the cylinder r1.
Let us investigate the movement for a cylinder initially located between the loop and the node. Planes x1 ¼ np/k

(n ¼ 0, 1,y) are the modes and planesx1 ¼ ðnþ
1
2
Þp=k (n ¼ 0, 1,y) are the loops of the velocity field (26). The sign of

the product of the terms sin(2kd) and (3�Z) in (25) determines the direction of the time-averaged force action. Analysis

of expression (25) shows that the time-averaged force shifts the more dense cylinder (Zo3) to the loop, and the lighter

cylinder (Z43) moves to the node. The equation of motion in the latter case can be written as follows:

ðpa2r1 þ pa2r0Þ€d ¼ pr0A2 sinð2kdÞ
3� Z

að1þ ZÞ

� �
ðkaÞ3, (27)

where pa2r0 is the apparent additional mass per unit length of the cylinder.

The loops and nodes of the velocity field correspond to the equilibrium states for the cylinder. If we check the stability

conditions for them, it can be shown that the mechanical system described by Eq. (27) is conservative (there exists a first

integral over the entire phase plane). Substitution of 2kd ¼ p�y+2np into Eq. (27) gives

€yþ w2 sin y ¼ 0, (28)

where

w2 ¼ 2A2k4 Zð3� ZÞ

ð1þ ZÞ2

� �
.

Eq. (28) does not depend on the cylinder radius and is the equation of free vibrations of the nonlinear oscillator.

Therefore, the cylinder accomplishes vibrational motion with respect to the position of stable equilibrium (Magnus,

1976).

The points of stable equilibrium for w240 (relatively dense cylinder) are determined by the zero values of y (loops of

the velocity field). These points are the loops of the velocity field: d ¼ ðnþ 1
2
Þp=k (n ¼ 0, 1,y). In this case the nodes of

the velocity field are the unstable equilibrium points. The period of the cylinder vibration is equal to

T ¼
l
va

1þ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Zð3� ZÞ

p 2

p
Kð�Þ, (29)

where K(e) is the total elliptic integral of the first kind and l is the wavelength; va is the peak velocity of the particles of

the liquid, e ¼ sin(kx0), with x0 indicating the maximum deflection of the cylinder from the loop in its mean motion.

The vibration period (29) has a minimum at Z ¼ 0.6:

Tmin ¼ 0:943
l
va

2

p
Kð�Þ. (30)

The points of stable equilibrium for w2o0 (relatively light cylinder) are determined by the values y ¼ p (nodes of the

velocity field: d ¼ np/k, n ¼ 0, 1,y). In this case, the loops of the velocity field are the points of unstable equilibrium.

The period of vibration is equal to

T ¼
l
va

1þ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ZðZ� 3Þ

p 2

p
Kð�Þ (31)

and does not have any extremes. The notations used here is the same as in formula (30), except that x0 denotes

maximum deflection from the node.

The same technique can be used to solve this problem for a spherical particle (Zhuk, 2008).
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5. Conclusions

A cylinder located in the liquid near the solid wall undergoes vibrational motion under the influence of radiation

force from the acoustic field; it vibrates with respect to the position of stable equilibrium, depending on both the

wavenumber of the acoustic wave and the ratio between the liquid density and the density of the cylinder. Analysis of

formulas (30) and (31) shows clearly that the vibration period of the cylinder in motion under the influence of radiation

force is dependent on wavelength, velocity amplitude of liquid particles, ratio of densities, and the initial location of the

cylinder with respect to the stable equilibrium point. The radius of the cylinder has no effect on the period of vibration.
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